Prediction of in vivo clearance and associated variability of CYP2C19 substrates by genotypes in populations utilizing a pharmacogenetics-based mechanistic model.

نویسندگان

  • Boyd Steere
  • Jessica A Roseberry Baker
  • Stephen D Hall
  • Yingying Guo
چکیده

It is important to examine the cytochrome P450 2C19 (CYP2C19) genetic contribution to drug disposition and responses of CYP2C19 substrates during drug development. Design of such clinical trials requires projection of genotype-dependent in vivo clearance and associated variabilities of the investigational drug, which is not generally available during early stages of drug development, but is essential for CYP2C19 substrates with multiple clearance pathways. This study evaluated the utility of pharmacogenetics-based mechanistic modeling in predicting such parameters. Hepatic CYP2C19 activity and variability within genotypes were derived from in vitro S-mephenytoin metabolic activity in genotyped human liver microsomes (N = 128). These data were then used in mechanistic models to predict genotype-dependent disposition of CYP2C19 substrates (i.e., S-mephenytoin, citalopram, pantoprazole, and voriconazole) by incorporating in vivo clearance or pharmacokinetics of wild-type subjects and parameters of other clearance pathways. Relative to the wild-type, the CYP2C19 abundance (coefficient of variation percentage) in CYP2C19*17/*17, *1/*17, *1/*1, *17/null, *1/null, and null/null microsomes was estimated as 1.85 (117%), 1.79 (155%), 1.00 (138%), 0.83 (80%), 0.38 (130%), and 0 (0%), respectively. The subsequent modeling and simulations predicted, within 2-fold of the observed, the means and variabilities of urinary S/R-mephenytoin ratio (36 of 37 genetic groups), the oral clearance of citalopram (9 of 9 genetic groups) and pantoprazole (6 of 6 genetic groups), and voriconazole oral clearance (4 of 4 genetic groups). Thus, relative CYP2C19 genotype-dependent hepatic activity and variability were quantified in vitro and used in a mechanistic model to predict pharmacokinetic variability, thus allowing the design of pharmacogenetics and drug-drug interaction trials for CYP2C19 substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dmd061523 870..883

It is important to examine the cytochrome P450 2C19 (CYP2C19) genetic contribution to drug disposition and responses of CYP2C19 substrates during drug development. Design of such clinical trials requires projection of genotype-dependent in vivo clearance and associated variabilities of the investigational drug, which is not generally available during early stages of drug development, but is ess...

متن کامل

Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates.

A systematic kinetic analysis of the metabolism of five benzodiazepines (low to high clearance compounds) was performed in CYP3A4, CYP3A5, and CYP2C19 baculovirus-expressed recombinant systems. The data obtained in the expression systems were scaled and compared with human liver microsomal predicted clearance and observed in vivo values, using either cytochrome P450 relative activity factors (R...

متن کامل

Frequencies of two CYP2C19 defective alleles (CYP2C19*2, and *3) among Iranian population in Mazandaran Province

Background: Cytochrome P450 2C19 (CYP2C19) is a polymorphically expressed enzyme that shows marked interindividual and interethnic variation. CYP2C19*2 and CYP2C19*3 are the most frequently identified defective alleles in Orientals and Caucasian poor metabolizers (PM). The aim of this study was to investigate the frequencies of CYP2C19*1, CYP2C19*2 and CYP2C19*3 alleles and CYP2C19 genotypes in...

متن کامل

Allele Frequency of CYP2C19 Gene Polymorphisms in a Healthy Iranian Population

Cytochrome P450 2C19 (CYP2C19) plays an important role in the metabolism and elimination of a wide range of medications. The polymorphisms of this enzyme give rise to substantial inter-individual and inter-ethnic variability in drug excretion rates and final serum concentrations. For this reason, therapeutic re-sponses and adverse drug reactions may vary from one person to another. In this stud...

متن کامل

Cyp2c19 Polymorphisms in Drug Metabolism and Response

Individuals vary widely in their response to drug treatment. After receiving doses of a drug that are recommended based on a population average, some patients could have an insufficient response, whereas others may experience adverse effects. Of the many factors causing variability in drug response across individuals, genetic polymorphism of drug-metabolizing enzymes is deemed to be one of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 43 6  شماره 

صفحات  -

تاریخ انتشار 2015